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2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-L-glucose [2-NBDLG] (2) is a long-awaited con-
trol substance compensating the non-specific uptake of 2-NBDG (1), which has been widely used as a
fluorescent tracer for monitoring D-glucose uptake into single, living cells. A new synthetic method of
optically pure L-glucosamine, which is not available as a natural product, has been developed. The first
and one-step synthesis of 2-NBDLG (2) from L-glucosamine is also described.

� 2008 Elsevier Ltd. All rights reserved.
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Figure 1. Structures of 2-NBDG (1) and 2-NBDLG (2).
An essential sugar, D-glucose is one of the most important
energy sources for the survival of various organisms, from Esche-
richia coli to mammals. Recent molecular techniques have revealed
increasing numbers of glucose transporters such as GLUTs (glucose
transporters) and SGLTs (sodium/glucose cotransporters) that may
be located in particular sites of the plasma membrane.1 In addition,
translocation of some transporters in response to insulin stimula-
tion has been documented.2 Historically, glucose transport activity
has been monitored by radiolabeled tracers, such as [14C] 2-deoxy-
D-glucose.3 However, they cannot be used for time-lapse monitor-
ing of glucose uptake at the single-cell level due to their poor
spatial and temporal resolution.

In 1996, Matsuoka et al . developed a fluorescent D-glucose
derivative, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-
D-glucose [2-NBDG] (1) as shown inFigure 1, that allows a more sen-
sitive measurement of glucose uptake in single-cell of living E. coli.4

In 2000, Yamada et al. proved that 2-NBDG (1) is incorporated into
mammalian cells through glucose transporters in a time, concentra-
tion, and temperature-dependent manner.5

So far 2-NBDG (1) has been successfully applied in various
organisms by different groups.6 Of particular interest is its applica-
ll rights reserved.
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tion to the brain,7 which utilizes glucose as a sole energy source,
and to malignant tumor cells.8 However, care should be taken in
that the fluorescence intensity is an arbitrary measure and that
the uptake of 2-NBDG (1) proceeds sometimes in seconds.

Thus, quantification requires stability of the system as well as
accurate procedures.6

Indeed, complete wash or removal of fluorescent 2-NBDG (1)
from extracellular fluid and the cell-surface is difficult issue,
particularly when applied to tissues consisting of heterogeneous
cells showing divergent activity.6 To overcome the difficulties, we
selected 2-NBDLG (2), an enantiomer of 2-NBDG (1), as a control
substrate for 2-NBDG (1). It is known that mammalian cells
specifically incorporate D-, instead of L-isomer of glucose.9 Thus,
measurement of the difference in the fluorescence derived from
2-NBDG (1) and 2-NBDLG (2) would provide critical information
on the net stereospecific uptake of D-glucose into single, living
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Scheme 1. Synthesis of L-glucosamine and 2-NBDLG (2).
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cells, setting it apart from other factors such as non-specific uptake
of the tracers and/or transporter-unrelated binding to the cellular
surface that can be serious problems in some application.10

Although a few papers11 on synthesis of L-glucosamine or its
derivatives have been reported, a new synthetic method of L-glucos-
amine should be absolutely required in practical view of optical
purity and preparative scale. Here, we describe the first synthesis
of 2-NBDLG (2) as well as optically pure L-glucosamine in practical
scale.

As shown in Scheme 1, L-glucosamine was synthesized from
L-mannose in 10 steps. By the applications of Montgomery’s
method,12 transformations of a starting material into the com-
pound 713 with one free hydroxyl group at C-2 position were
carried out, namely, peracetylation, bromination at C-1 position,
orthoester-formation, deacetylation, benzylation, and acidic
methanolysis. The free 2-hydroxyl group in methyl glycoside 7
was sulfonylated with trifluoromethanesulfonic anhydride in the
presence of pyridine to give the compound 8.14 By use of tetra-
butylammonium azide15 in benzene, the triflate 8 was converted
to azide 9, being accompanied by inversion of the configuration at
C-2 position.16 Catalytic hydrogenation of the azide 9 gave the
primary amine 10. Finally, the methyl glycoside was hydrolyzed
with 6 N-HCl at 100 �C17 to form the target compound. The 1H
NMR data18 of synthetic L-glucosamine thus obtained were
completely identical with those of commercially available D-glu-
cosamine. On the other hand, optical purity of L-glucosamine
was confirmed by the comparison of specific rotation with that
of D-glucosamine.19 Optically pure L-glucosamine thus obtained
was coupled with 4-chloro-7-nitrobenz-2-oxa-1,3-diazole (NBD-
Cl) to give 2-NBDLG (2).20

Use of 2-NBDG (1) has brought exciting implications including
such as metabolic wave7a and intercellular transport of D-glucose
and/or its phosphorylated form through gap junction.21 Use of
transporter-recognizable (D-isomer) and unrecognizable (L-isomer)
fluorescent analogs combined with modern live-cell imaging tech-
niques, such as real-time confocal microscopy, should provide
valuable information on the ligand-transporter interactions. Bioas-
says by using 2-NBDLG (2) are currently under way. Those results
will be shown elsewhere.
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