Tetrahedron Letters 49 (2008) 6876-6878

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of 2-NBDLG, a fluorescent derivative of L-glucosamine; the antipode of D-glucose tracer 2-NBDG

Toshihiro Yamamoto^{a,*}, Yuji Nishiuchi^a, Tadashi Teshima^a, Hideaki Matsuoka^b, Katsuya Yamada^{c,*}

^a Peptide Institute, Inc., Saito Research Center, Ibaraki, Osaka 567-0085, Japan

^b Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

^c Department of Physiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan

ARTICLE INFO

Article history: Received 2 August 2008 Revised 12 September 2008 Accepted 16 September 2008 Available online 19 September 2008

Keywords: L-Glucosamine 2-NBDG 2-NBDLG GLUTs SGLTs Glucose uptake

An essential sugar, D-glucose is one of the most important energy sources for the survival of various organisms, from *Escherichia coli* to mammals. Recent molecular techniques have revealed increasing numbers of glucose transporters such as GLUTs (glucose transporters) and SGLTs (sodium/glucose cotransporters) that may be located in particular sites of the plasma membrane.¹ In addition, translocation of some transporters in response to insulin stimulation has been documented.² Historically, glucose transport activity has been monitored by radiolabeled tracers, such as [¹⁴C] 2-deoxy-D-glucose.³ However, they cannot be used for time-lapse monitoring of glucose uptake at the single-cell level due to their poor spatial and temporal resolution.

In 1996, Matsuoka et al. developed a fluorescent D-glucose derivative, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose [2-NBDG] (1) as shown in Figure 1, that allows a more sensitive measurement of glucose uptake in single-cell of living *E. coli.*⁴ In 2000, Yamada et al. proved that 2-NBDG (1) is incorporated into mammalian cells through glucose transporters in a time, concentration, and temperature-dependent manner.⁵

So far 2-NBDG (1) has been successfully applied in various organisms by different groups.⁶ Of particular interest is its applica-

ABSTRACT

2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-L-glucose [2-NBDLG] (2) is a long-awaited control substance compensating the non-specific uptake of 2-NBDG (1), which has been widely used as a fluorescent tracer for monitoring D-glucose uptake into single, living cells. A new synthetic method of optically pure L-glucosamine, which is not available as a natural product, has been developed. The first and one-step synthesis of 2-NBDLG (2) from L-glucosamine is also described.

© 2008 Elsevier Ltd. All rights reserved.

Figure 1. Structures of 2-NBDG (1) and 2-NBDLG (2).

tion to the brain,⁷ which utilizes glucose as a sole energy source, and to malignant tumor cells.⁸ However, care should be taken in that the fluorescence intensity is an arbitrary measure and that the uptake of 2-NBDG (1) proceeds sometimes in seconds.

Thus, quantification requires stability of the system as well as accurate procedures.⁶

Indeed, complete wash or removal of fluorescent 2-NBDG (1) from extracellular fluid and the cell-surface is difficult issue, particularly when applied to tissues consisting of heterogeneous cells showing divergent activity.⁶ To overcome the difficulties, we selected 2-NBDLG (2), an enantiomer of 2-NBDG (1), as a control substrate for 2-NBDG (1). It is known that mammalian cells specifically incorporate D-, instead of L-isomer of glucose.⁹ Thus, measurement of the difference in the fluorescence derived from 2-NBDG (1) and 2-NBDLG (2) would provide critical information on the net stereospecific uptake of D-glucose into single, living

^{*} Corresponding authors. Tel.: +81 72 643 4411; fax: +81 72 643 4422 (for synthesis: T.Y.); tel.: +81 172 39 5008; fax: +81 172 39 5009 (for biological concept: K.Y.).

E-mail addresses: yamamoto@peptide.co.jp (T. Yamamoto), kyamada@cc. hirosaki-u.ac.jp (K. Yamada).

Scheme 1. Synthesis of L-glucosamine and 2-NBDLG (2).

cells, setting it apart from other factors such as non-specific uptake of the tracers and/or transporter-unrelated binding to the cellular surface that can be serious problems in some application.¹⁰

Although a few papers¹¹ on synthesis of L-glucosamine or its derivatives have been reported, a new synthetic method of L-glucosamine should be absolutely required in practical view of optical purity and preparative scale. Here, we describe the first synthesis of 2-NBDLG (**2**) as well as optically pure L-glucosamine in practical scale.

As shown in Scheme 1. L-glucosamine was synthesized from L-mannose in 10 steps. By the applications of Montgomery's method,¹² transformations of a starting material into the compound 7^{13} with one free hydroxyl group at C-2 position were carried out, namely, peracetylation, bromination at C-1 position, orthoester-formation, deacetylation, benzylation, and acidic methanolysis. The free 2-hydroxyl group in methyl glycoside 7 was sulfonylated with trifluoromethanesulfonic anhydride in the presence of pyridine to give the compound 8.14 By use of tetrabutylammonium azide¹⁵ in benzene, the triflate **8** was converted to azide 9, being accompanied by inversion of the configuration at C-2 position.¹⁶ Catalytic hydrogenation of the azide **9** gave the primary amine 10. Finally, the methyl glycoside was hydrolyzed with 6 N-HCl at 100 $^{\circ}C^{17}$ to form the target compound. The ¹H NMR data¹⁸ of synthetic L-glucosamine thus obtained were completely identical with those of commercially available D-glucosamine. On the other hand, optical purity of L-glucosamine was confirmed by the comparison of specific rotation with that of D-glucosamine.¹⁹ Optically pure L-glucosamine thus obtained was coupled with 4-chloro-7-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) to give 2-NBDLG (2).²⁰

Use of 2-NBDG (1) has brought exciting implications including such as metabolic wave^{7a} and intercellular transport of p-glucose and/or its phosphorylated form through gap junction.²¹ Use of transporter-recognizable (p-isomer) and unrecognizable (t-isomer) fluorescent analogs combined with modern live-cell imaging techniques, such as real-time confocal microscopy, should provide valuable information on the ligand-transporter interactions. Bioassays by using 2-NBDLG (2) are currently under way. Those results will be shown elsewhere.

Acknowledgements

This research was supported by Science and Technology Incubation Program in Advanced Regions, Japan Science and Technology Agency.

References and notes

- 1. Wood, I. S.; Trayhurn, P. Br. J. Nutr. 2003, 89, 3-9.
- 2. McEwen, B. S.; Reagan, L. P. Eur. J. Pharmacol. 2004, 490, 13-24.
- Sokoloff, L.; Reivich, M.; Kennedy, C.; Des Rosiers, M. H.; Patlak, C. S.; Pettigrew, K. D.; Sakurada, O.; Shinohara, M. J. Neurochem. 1977, 28, 897–916.
- Yoshioka, K.; Takahashi, H.; Homma, T.; Saito, M.; Oh, K.-B.; Nemoto, Y.; Matsuoka, H. Biochim. Biophys. Acta 1996, 1289, 5-9.
- Yamada, K.; Nakata, M.; Horimoto, N.; Saito, M.; Matsuoka, H.; Inagaki, N. J. Biol. Chem. 2000, 275, 22278-22283.
- Yamada, K.; Saito, M.; Matsuoka, H.; Inagaki, N. Nat. Protoc. 2007, 2, 753– 762.
- (a) Bernardinelli, Y.; Magistretti, P. J.; Chatton, J. Y. Mol. Imaging Biol. 2005, 7, 388–392; (b) Barros, L.; Bittner, C. X.; Loaiza, A.; Porras, O. H. Glia 2007, 55, 1222–1237.
- (a) O'Neil, R. G.; Wu, L.; Mullani, N. *Mol. Imaging Biol.* 2005, 7, 388–392; (b) Cheng, Z.; Levi, J.; Xiong, Z.; Gheysens, O.; Keren, S.; Chen, X.; Gambhir, S. S. *Bioconjugate Chem.* 2006, 17, 662–669.
- 9. LeFevre, P. G. Pharmacol. Rev. 1961, 13, 39-70.
- 10. Etxeberria, E.; Gonzalez, P.; Tomlinson, P.; Pozueta-Romero, J. J. Exp. Botany 2005, 56, 1905–1912.
- (a) Lehmann, J.; Moritz, A. Liebigs Ann. Chem. **1991**, 937–940; (b) Ermolenko, L.; Sasaki, N. A.; Potier, P. J. Chem. Soc., Perkin Trans. 1 **2000**, 2465–2473; (c) Lafont, D.; Boullanger, P. Tetrahedron: Asymmetry **2006**, 17, 3368–3379.
- 12. Franks, N. E.; Montgomery, R. Carbohydr. Res. 1968, 6, 286-298.
- ¹H NMR data of the compound 7 (in CDCl₃, 400 MHz): δ 7.24–7.36 (m, 15H, Ph), δ 4.80 (d, 1H, J = 1.6 Hz, H-1), δ 4.69 (ABq, 2H, J = 11.9 Hz, CH₂-Ph), δ 4.67 (ABq, 2H, J = 11.3 Hz, CH₂-Ph), δ 4.60 (ABq, 2H, J = 12.4 Hz, CH₂-Ph), δ 4.03 (m, 1H, H- 2), δ 3.70–3.88 (m, 5H, H-3, H-4, H-5, H-6a and H-6b), δ 3.37 (s, 3H, OMe), δ 2.49 (br d, 1H, J = 2.5 Hz, C2–0H).
- ¹H NMR data of the compound **8** (in CDCl₃, 400 MHz): δ 7.10–7.38 (m, 15H, Ph), δ 5.11 (m, 1H, H-2), δ 4.90 (d, 1H, J = 1.9 Hz, H-1), δ 4.69 (ABq, 2H, J = 12.0 Hz, CH₂-Ph), δ 4.64 (ABq, 2H, J = 10.7 Hz, CH₂-Ph), δ 4.61 (ABq, 2H, J = 11.7 Hz, CH₂- Ph), δ 4.00 (dd, 1H, J = 2.9 and 8.9 Hz, H-3), δ 3.69–3.84 (m, 4H, H-4, H-5, H-6a and H-6b), δ 3.40 (s, 3H, OMe).
- Danishefsky, S. J.; DeNinno, M. P.; Chen, S. J. Am. Chem. Soc. 1988, 110, 3929– 3940.
- 16. ¹H NMR data of the compound **9** (in CDCl₃, 400 MHz): δ 7.15–7.38 (m, 15H, Ph), δ 4.87 (ABq, 2H, J = 12.4 Hz, CH₂-Ph), δ 4.83 (d, 1H, J = 3.5 Hz, H-1), δ 4.66 (ABq, 2H, J = 10.7 Hz, CH₂-Ph), δ 4.57 (ABq, 2H, J = 12.4 Hz, CH₂-Ph), δ 3.98 (dd, 1H, J = 8.9 and 10.2 Hz, H-3), δ 3.66–3.80 (m, 4H, H-4, H-5, H-6a, and H-6b), δ 3.45(dd, 1H, J = 3.5, 10.4 Hz, H-2), δ 3.43 (s, 3H, OMe).

Because of E2 elimination from the triflate ${\bf 8}$ as a side reaction, the desired compound, azide ${\bf 9}$ was obtained in low yield.

Calcd for C₆H₁₄ClNO₅: C, 33.42; H, 6.54; N, 6.50. Found: C, 33.31; H, 6.46; N, 6.36. 19. [α]_D at 20 °C (24 h after dissolving in water) synthetic ι-glucosamine: -72.05 (*c*

- 17. Under usual condition such as at $60 \circ C$ in 1 N-HCl compound **10** was very stable, and no hydrolysis occurred probably due to the amino group at C-2 position.
- position.
 ¹⁸ ¹⁴ H NMR data of ι-glucosamine (in D₂O, 400 MHz): δ 5.36 (d, 0.6H, *J* = 3.5 Hz, H-1α), δ 4.85 (d, 0.4H, *J* = 8.3 Hz, H-1β), δ 3.36-3.84 (m, 5H, H-3α and 3β, H-4α and 4β, H-5α and 5β, H-6a α and β, and H-6b α and β), δ 3.21 (dd, 0.6H, *J* = 3.5, 10.6 Hz, H-2α), δ 2.92 (dd, 0.4H, *J* = 8.3, 10.6 Hz, H-2β). Anal.
- 1.0, H₂O) commercially available D-glucosamine: +72.20 (*c* 1.0, H₂O). 1.0, H₂O) commercially available D-glucosamine: +72.20 (*c* 1.0, H₂O). 20. ¹H NMR data of 2-NBDLG (**2**) (in D₂O, 400 MHz): δ 8.52 (d, 1H, *J* = 9.1 Hz, H6'), δ 6.56 and δ 6.54 (d × 2, 0.5H × 2, *J* = 9.1 Hz and *J* = 9.1 Hz, H5'), δ 5.38 (d, 0.5H, *J* = 2.8 Hz, H-1 α), δ 4.89 (d, 0.5H, *J* = 8.1 Hz, H-1 β), δ 3.50–4.02 (m, 6H, H-2 α and
- J = 2.8 Hz, H-1 α), δ 4.89 (d, 0.5H, J = 8.1 Hz, H-1 β), δ 3.50–4.02 (m, 6H, H-2 α and 2 β , H-3 α and 3 β , H-4 α and 4 β , H-5 α and 5 β , H-6a α and β , and H-6b α and β).
- 21. Tabernero, A.; Medina, J. M.; Giaume, C. J. Neurochem. 2006, 99, 1049-1061.